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Reactions between K3[M(CN)6] and [Mn(5-Brsalen)(H2O)2]+ (5-
Brsalen ) N,N′-ethylenebis(5-bromosalicylidene)aminato dianion)
in a mixture of methanol and water afford the compounds K[(5-
Brsalen)2(H2O)2Mn2M(CN)6]‚2H2O, with M ) Cr (1) or Fe (2). The
two compounds are isostructural, each containing a molecular
cluster with a linear MnIII−NC−MIII−CN−MnIII core and tetragonally
elongated coordination about the MnIII centers. Magnetic data
indicate the presence of weak exchange interactions within the
clusters, giving rise to ground states of S ) 5/2 and 9/2 with
significant zero-field splitting. Despite the proximity of spin-excited
states, ac susceptibility data reveal frequency-dependent out-of-
phase signals characteristic of single-molecule magnets with spin-
reversal barriers of Ueff ) 16 and 25 cm-1, respectively.

Over a decade ago, it was discovered that the negative
axial zero-field splitting parameterD associated with theS
) 10 ground state of [Mn12O12(CH3CO2)16(H2O)4] gives rise
to slow paramagnetic relaxation.1 The ensuing search for
molecules with a larger spin-reversal barrier (U ) S2|D| or
(S2 - 1/4)|D| for integer and half-integer values ofS,
respectively) has since yielded a range of transition metal-
oxo species exhibiting similar behavior.2 The highest barrier
observed for such a single-molecule magnet, however, is still
justUeff ) 56 cm-1, occurring in the bromoacetate-substituted
analogue of the original Mn12O12 cluster.3 Recently, many
researchers have focused upon synthesizing metal-cyanide
clusters, for which the parametersSandD are more readily

varied within a structure type via substitution of different
transition metal ions.4,5 Thus, for example, replacing the CrIII

centers in [(Me3tacn)6MnCr6(CN)18]2+ with MoIII was shown
to increase anisotropy, generating a barrier ofUeff ) 10
cm-1.5c,e Surprisingly, few of the cyano-bridged molecules
tested for this behavior have included MnIII ions,4h,5f which
provide the main source of anisotropy in the Mn12O12

clusters. Herein, we report that linear Mn2M(CN)6 (M ) Cr,
Fe) species incorporating Schiff base MnIII complexes indeed
behave as single-molecule magnets.

A tetragonal elongation in the octahedral coordination
geometry of a high-spin MnIII complex has long been known
to result in a5B1g ground state with negative axial zero-
field splitting.6 For Schiff base complexes in particular, the
magnitude of the distortion is comparable to that observed
in [Mn12O12(CH3CO2)16(H2O)4],7 andD values tend to fall
within the range-1 to-4 cm-1.8 Such complexes have been
shown to react with hexacyanometalate ions to produce a
variety of cyano-bridged frameworks9 and molecular clus-
ters.5f,9ac,10 Among the latter species, [(5-Brsalen)2(H2O)2-
Mn2Fe(CN)6]- caught our attention, owing to its proposed
geometry in which the elongation axes for the two MnIII

centers are collinear.9a Moreover, the magnetic susceptibility
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data for this cluster were interpreted as indicating the
presence of ferromagnetic exchange coupling and a negative
axial zero-field splitting,9a making it a good candidate for a
single-molecule magnet.

The cluster-containing compounds K[(5-Brsalen)2(H2O)2-
Mn2M(CN)6]‚2H2O, where M) Cr (1) and Fe (2), were
synthesized by direct combination of their molecular com-
ponents. A solution of K3[Cr(CN)6] (41 mg, 0.13 mmol) in
1 mL of water was added to a solution of [Mn(5-Brsalen)-
(H2O)2]ClO4 (69 mg, 0.11 mmol) in 10 mL of methanol,
and the mixture was stirred for 30 min to give a yellow-
brown precipitate. The solid was collected by filtration,
washed with 6 mL of a 1:1 mixture of methanol and water,
and dried in air to give 51 mg (70%) of1.11 An analogous
procedure yielded 230 mg (73%) of2, also as a yellow-
brown solid.12 In each case, dark brown plate-shaped crystals
suitable for X-ray analysis13 were obtained simply by layering
the solutions of the reactants.

Compounds1 and 2 are isostructural, both containing a
linear [(5-Brsalen)2(H2O)2Mn2M(CN)6]- cluster in which an
octahedral [M(CN)6]3- complex is sandwiched between a
pair of [Mn(5-Brsalen)(H2O)]+ units. As shown for1 in
Figure 1, the MnIII centers are bound through the nitrogen
ends of trans cyanide groups, with a long Mn-N(1)
separation of 2.342(4) Å and a significantly bent Mn-N(1)-
C(1) angle of 141.8(4)°. The opposing coordination site on
each MnIII center is taken up by a water molecule, with a
Mn-O(3) separation of 2.220(4) Å. As expected, these
distances are significantly longer than those associated with
the 5-Brsalen ligand, which binds with mean Mn-N and
Mn-O distances of 1.985(2) and 1.886(2) Å, respectively.
The resulting ratio of axial:equatorial ligand distances is 1.18,
only slightly higher than the corresponding ratio of 1.13 in
the structure of [Mn12O12(CH3CO2)16(H2O)4]‚2CH3CO2H‚
4H2O.7 Although not perfectly collinear, the elongation axes
associated with the two MnIII centers in the cyano-bridged

cluster are rigorously parallel by virtue of its crystallographic
inversion symmetry. Note that the bromine substituents on
the 5-Brsalen ligand appear to be essential for forming such
trinuclear species, since related reactions employing the less
sterically demanding salen ligand instead lead to the hepta-
nuclear clusters [(salen)6(H2O)6Mn6M(CN)6]3+.10 While these
larger molecules can have a higher-spin ground state, they
do not necessarily exhibit the negative axial zero-field
splitting parameter required of a single-molecule magnet,
perhaps as a consequence of the conflicting orientations of
the elongation axes about the MnIII centers.5f

Dc magnetic susceptibility measurements were performed
on 1 to probe the nature of the magnetic exchange coupling
within the Mn2Cr cluster. At 295 K, the compound exhibits
øMT ) 6.480 cm3K/mol, which is somewhat below the spin-
only value of 7.878 cm3 K/mol expected for one CrIII (S )
3/2) and two MnIII (S ) 2) centers withg ) 2.00 and in the
absence of any exchange coupling. With decreasing tem-
perature,øMT drops steadily to 3.924 cm3 K/mol at 40 K,
and then more precipitously to 1.255 cm3K/mol at 5 K (see
Figure S1 in the Supporting Information). The initial trend
indicates the presence of antiferromagnetic exchange cou-
pling between the CrIII and MnIII centers, affording anS )
5/2 ground state. Indeed, the data above 40 K were readily
fit using MAGFIT 3.114 and an exchange Hamiltonian of
the formĤ ) -2JŜCr‚(ŜMn(1) + ŜMn(2)) to giveJ ) -6.3 cm-1

andg ) 1.912. This represents significantly stronger coupling
than apparent in [(salen)6(H2O)6Mn6Cr(CN)6]3+, for which
J ) -2.5 cm-1.5f A similar trend whereinJ diminishes as
the number of exchange pathways increases has been noted
previously for cyano-bridged clusters.5d In accord with the
field dependence of the magnetization data for1 (see Figure
S2, Supporting Information), the enhanced decay oføMT at
very low temperatures is attributed to zero-field splitting in
the S ) 5/2 ground state of the Mn2Cr cluster.

As shown in the upper panel of Figure 2, compound2
exhibits substantially different magnetic behavior. At 295
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Figure 1. Structure of the linear [(5-Brsalen)2(H2O)2Mn2Cr(CN)6]- cluster
in 1; H atoms are omitted for clarity. The molecule resides on an inversion
center within the crystal. Selected interatomic distances (Å) and angles
(deg): mean Cr-C 2.071(2), mean CtN 1.155(3), Mn-N(4) 1.981(3),
Mn-N(5) 1.988(3), Mn-O(1) 1.873(3), Mn-O(2) 1.898(3), Mn-N(1)
2.342(4), Mn-O(3) 2.220(4), C(1)-Cr-C(2) 89.9(2), C(2)-Cr-C(3) 92.9-
(2), C(1)-Cr-C(3) 89.5(2), Cr-C(1)-N(1) 176.9(4), Cr-C(2)-N(2)
176.6(4), Cr-C(3)-N(3) 176.6(4), N(1)-Mn-N(4) 88.8(1), N(1)-Mn-
N(5) 85.2(1), N(4)-Mn-O(3) 90.2(1), N(5)-Mn-O(3) 86.4(1), O(1)-
Mn-N(1) 94.7(1), O(2)-Mn-N(1) 91.5(1), O(1)-Mn-O(3) 93.7(1),
O(2)-Mn-O(3) 88.7(1), N(1)-Mn-O(3) 171.6(1), Mn-C(1)-N(1) 141.8(4).

COMMUNICATION

Inorganic Chemistry, Vol. 43, No. 5, 2004 1607



K, øMT is 5.927 cm3 K/mol, only slightly less than the spin-
only value of 6.378 cm3 K/mol expected for one FeIII (S )
1/2) ion and two MnIII (S) 2) ions withg ) 2.00 and in the
absence of any exchange coupling. With decreasing tem-
perature,øMT gradually increases, achieving a maximum of
6.372 cm3 K/mol at 18 K before plummeting. The rise in
øMT indicates ferromagnetic coupling between the FeIII and
MnIII centers, resulting in anS) 9/2 ground state. Employing
the same procedure as before, the data above 30 K were fit
to giveJ ) 2.3 cm-1 andg ) 1.900.15 The coupling constant
is in close agreement with the value of 2J ) 4.5 cm-1

obtained for this compound previously by a different fitting
method.9a The drop inøMT at very low temperatures is again
attributable to zero-field splitting.

Of the two clusters, [(5-Brsalen)2(H2O)2Mn2Fe(CN)6]- has
the higher spin ground state, and was therefore studied most
intensively. The lower panel in Figure 2 shows the field
dependence of the magnetization data for compound2 at
temperatures between 2 and 20 K. The nonsuperposition of
the isofield lines clearly indicates the presence of significant
zero-field splitting. Additionally, even at 55 kG and 2 K,
the magnetization is still well below the saturation value of
8.55 NµB expected for anS ) 9/2 ground state withg )
1.900 in the absence of zero-field splitting. Efforts to extract
reliable zero-field splitting parameters from these data,
however, were severely hampered by the presence of low-
lying spin-excited states. Specifically, the very weak ferro-
magnetic exchange coupling within the cluster leads to
S ) 7/2 andS ) 5/2 states located 2.3 and 4.6 cm-1 above
the ground state, respectively. As a consequence, zero-field
splittings on the order of 1 cm-1 in magnitude associated

with any or all of these states results in mixing of the cor-
respondingMS levels. While reasonable simulations of the
data could be obtained using three independentD values for
these three lowest-energy spin states, the results are probably
not reliable owing to overparametrization.

Despite the proximity of lower-spin excited states, ac mag-
netic susceptibility data collected on2 in zero applied dc
field manifest slow relaxation of the magnetization. As the
frequency of the oscillating 1 G field increases, a lag in the
in-phase component of the molar ac susceptibility,øM′, is
observed at low temperatures (see Figure S3, Supporting
Information). The corresponding rise in the out-of-phase sus-
ceptibility, øM′′ is shown in Figure 3 for switching frequen-
cies of 100, 500, 900, and 1200 Hz. In each case,øM′′
achieves a maximum at a temperature where it is assumed
that the switching of the magnetic field matches the relaxa-
tion rate,1/τ, for the magnetization of the cluster. As for other
single-molecule magnets,1,2 the ensuing relaxation times
follow an Arrhenius relationship:τ ) τ0 exp(Ueff/kBT). Ac-
cordingly, a plot of lnτ vs 1/T is linear (see inset in Figure 3),
with a least-squares fit yieldingτ0 ) 5.5× 10-10 s andUeff

) 25 cm-1. Assuming that the slow relaxation stems exclu-
sively from theS) 9/2 ground state, the 25 cm-1 barrier sets
a limit on the associated zero-field splitting parameter ofD e
-1.3 cm-1,whichisveryclosetothevaluereportedpreviously.9a

Interestingly, although the Mn2Cr cluster possesses a ground
state of justS ) 5/2, it too behaves as a single-molecule
magnet. A completely analogous interpretation of the ac
susceptibility data for1 (see Figures S4 and S5, Supporting
Information) gaveτ0 ) 6.1 × 10-8 s andUeff ) 16 cm-1.

The foregoing results demonstrate the highest spin-reversal
barriers yet observed for cyano-bridged single-molecule
magnets. Efforts to incorporate Schiff base complexes of
MnIII into longer chain clusters with higher-spin ground states
are underway.
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(15) Note that this fit did not take the orbital degeneracy of the FeIII center
into account, and is therefore only approximate.

Figure 2. Magnetic behavior of2. Upper: Dc molar susceptibility data,
as measured in an applied field of 10 kG. The solid line represents a
calculated fit to the data; see text for details. Lower: Magnetization data
in applied fields from 10 to 55 kG at temperatures between 2 and 20 K.

Figure 3. Out-of-phase component of the ac susceptibility for2, measured
in a 1 Gfield oscillating at selected frequencies. The plot in the inset shows
that the relaxation times,τ, obtained from the peaks in the ac susceptibility
conform to an Arrhenius relationship.
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